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ABSTRACT: Our main objective in this work is to describe new generalization of Ʌ-convergence for double 
sequences in the probabilistic normed spaces. The notion of statistical Ʌ-convergence and statistical Ʌ-
Cauchy of double sequences has been defined in this particular normed space. We have given example 
which demonstrates that this idea is more generalized than the usual convergence.  
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I. INTRODUCTION 

Firstly, in 1951, statistical convergence was initially 
coined by Henry Fast [4]. In fact, Fast got this concept 
from Steinhaus [30]. Then Antoni Zygmund [32] was the 
first who proved statistical convergence for Fourier 
Series in his book “Trigonometric Series” [31] that was 
the first edition in 1935. But in that book, he was using 
the term ‘almost convergence’ rather than ‘statistical 
convergence’. The notion ‘almost convergence’ was 
already used by Lorentz [13] so Henry Fast [4] had to 
take some other name for his concept. So, he took 
‘Statistical convergence’ as appropriate notion. After the 
papers of Fridy [5] and Ṧalãt [27], this concept became 
a dynamic area of research. After that, several authors 
contributed a vast literature for this concept. Several 
authors has given various extensions, generalizations, 
variants and applications about the notion [see 2, 6,12, 
15,16, 18, 19, 22, 23, 24, 25, 28].  
The term λ-statistical convergence for the sequences 
was introduced by Mursaleen [17]. He generalized this 
concept of statistical convergence using (V, λ)-
summability. Further, the idea of statistical convergence 
for double sequences came into the consideration after 
the work of Bromwich [1]. Double sequences also were 
of keen interest of many researchers like Hardy [8], 
Tripathy [31], Mursaleen and Edely [20], Mursaleen and 
Mohiuddine [21], Kostyrko et al.,  [3, 11] Savaş and 
Patterson [29]  etc. in the area of “statistical 
convergence”.  
The generalized metric space named as statistical 
metric space was presented by Menger [14]. Now days, 
it is known as probabilistic metric space and converted 
in active area of research. It has so many applications in 
functional analysis. These types of sequences has 
motivated Karakus [9, 10] to define a new concept 
statistical convergence for double sequence in PN-
Space. 
In this paper, we describe and analyze the term 
statistical Λ-convergence as well as statistical Λ- Cauchy 
for double sequences in the PN-Space. First, we review 
some basic terms as follows: 
A natural density of the set  � (which is the subset of 
natural numbers ℕ) is characterized by 

�	�
 = �

 |�� ∈ �: � ≤ ��|  , when � → ∞ 

where |.| indicates the order of the enclosed set. 
 

Definition 1.1: [4]  A sequence � = 	��
 converges 
statistically to some number � if for each � > 0, δ	� ≤ �, : |�� − �| ≥ ��
 = 0. 
Symbollically, #$ − lim�→( �� = � where #$ is the 
collection of all statistically convergent sequences. 
Definition 1.2: The function ): * → * is known as a 

distribution function when it is a non-decreasing and left 
continuous with (i) +�,-)	�
 = 0 and (ii) ./0-)	�
 = 1 . ℱ3 represents the collection of all the distribution 
functions. 
Definition 1.3: A t-norm (triangular form) is a mapping  ∗ :60,17 × 60,17 → 60,17 which is continuous, non-
decreasing, commutative and associative.  
Definition 1.4: [7]  Consider  9 is a linear space,  ∗ is a 
t-norm and and ℱ3 is the collection of distribution 
functions. Consider a map  �: 9 → ℱ3 with �: = �	�
 
and �:	$
 is the value of �:  at $ ∈ *. Then  � and (9; �,∗ ) 
is known as probabilistic norm and probabilistic normed 
space respectively, if it holds the next four axioms: 

(i) �:	0
 = 0, 
(ii) �:	$
  = 1 , ∀ $ > 0 iff � = 0 , 

(iii) �:=	$
  = �: >$ |?|@ A where ? ≠ 0, 
(iv) �:3C	. + $
 = �:	.
 ∗ �:	$
, ∀ E,�F9 and   

., $ ∈ *G3 = 60, ∞
. 
Definition 1.5: [9] Let 	9, �,∗
 be a �� − Space. A 

double sequence � = 	�MN
 is called convergent to 

some � with respect to � in 	9, �,∗
 if for any � > 0 and ) ∈ 	0,1
 ∃ a integer � > 0 such that �:PQRS	�
 > 1 − ), 
whenever T, ℎ ≥ �. 
Definition 1.6:[9] Let 	9, �,∗
 be a �� − Space. A double 

sequence � = 	�MN
 is called Cauchy sequence with 

respect to � in 	9, �,∗
 if for any � > 0 and ) ∈	0,1
 ∃ � > 0 and V > 0 such that �:PQR:WX	�
 > 1 − ), 
whenever T, ℎ ≥ � and  0, Y ≥ V . 

II. MAIN RESULTS 

Before explaining the statistical Λ-convergence for 
double sequences in �� − Space. First we mention Λ-
convergence for single sequences which is defined by 
Mursaleen [26] as follows: 

Suppose  λ = 	[\
\]G(  is a real sequence of positive 
numbers that approaches to ∞ with [
3� ≤ [
 + 1, [� =1. Then, sequence � =  	��
 is termed as Λ-convergent 

e
t
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to some � when Λ�	�
 → � whenever  → ∞, and  

 Λ�	�
  =  �
^_

∑ 	λ\ − [\R�
�\]G �\ , (  Fℕ ). 

Definition 2.1: A double sequence � = 	�MN
 is called 

statistically Λ-convergent to some � if for any � > 0, 
 

�
�
 ab	T, ℎ
; T ≤ �, ℎ ≤  ∶ aΛ�MN − �a ≥ �da = 0 , 

when  , � → ∞ 

i.e. �efb	T, ℎ
 ∈ ℕ × ℕ ∶ aΛ�MN − �a ≥ �dg = 0. 

We can denote it as   #$e − �MN = �. 

Definition 2.2: A double sequence � = 	�MN
 is called 

statistically Λ-Cauchy if for any � > 0  ∃ � > 0 and V > 0 such that  
�

�
 ab	T, ℎ
; T ≤ �, ℎ ≤  ∶ aΛ�MN − Λ�hia ≥ �da = 0 , when 

 , � → ∞ 

i.e.  �efb	T, ℎ
 ∈ ℕ × ℕ ∶ aΛ�MN − Λ�hia ≥ �dg = 0, 
whenever T, 0 ≥ �, ℎ, Y ≥ V. 
Definition 2.3: Let 	9, �,∗
 be a �� − Space. A double 

sequence � = 	�MN
 is called statistically Λ-convergent 

to some � with respect to � in 	9, �,∗
 if for any � > 0 
and ) ∈ 	0,1
, we have 

�
�
 jk	T, ℎ
; T ≤ �, ℎ ≤  : �e:PQRS	�
 ≤ 1 − )lj = 0, when 

 , � → ∞. 

i.e.  �e >k	T, ℎ
 ∈ ℕ × ℕ: �e:PQRS	�
 ≤ 1 − )lA = 0. 

or 
�

�
 jk	T, ℎ
; T ≤ �, ℎ ≤  : �e:PQRS	�
 > 1 − )lj = 1 , 

when  , � → ∞. 

i.e. �e >k	T, ℎ
 ∈ ℕ × ℕ: �e:PQRS	�
 > 1 − )lA = 1. 
Symbolically, #$em − �MN = �. 

Definition 2.4: Let 	9, �,∗
 be a �� − Space. A double 

sequence � = 	�MN
 is called statistically Λ-Cauchy with 

respect to � in	9, �,∗
 if for any � > 0 and ) ∈	0,1
  ∃ � > 0 and V > 0  such that 

�e >k	T, ℎ
 ∈ ℕ × ℕ ∶  �e:PQRe:WX	�
 ≤ 1 − )lA = 0, 

whenever T, 0 ≥ � , ℎ, Y ≥ V. 
Theorem 2.5: A double sequence � = 	�MN
 defined in �� − Space	9, �,∗
 is statistically Λ-convergent with 
respect to � to unique limit. 

Proof: Suppose that #$em − �MN = �� and   #$em − �MN =
�nwhere �� ≠ �n . 
For every � > 0 and ) ∈ 	0,1
, take  o ∈ 	0,1
 with 	1 − o
 ∗ 	1 − o
 ≥ 1 − ).  

Let p�	o, �
 = k	T, ℎ
 ∈ ℕ × ℕ: �e:PQRSq 	�
 ≤ 1 − ol, 
pn	o, �
 = k	T, ℎ
 ∈ ℕ × ℕ: �e:PQRSr 	�
 ≤ 1 − ol. 

As #$em − �MN = ��, then we have �e�p�	o, �
� = 0 for all 

� ≥ 0. 
Furthermore, using #$em − �MN = �n, we have 

�e�pn	o, �
� = 0 for all � ≥ 0. 
Let p�,n	$, �
=�p�	o, �
 ∪ pn	o, �
�, then we get 

�e�p�,n	o, �
� = 0 i.e. �e >ℕ × ℕ − p�,n	o, �
A = 1. 

If 	T, ℎ
 ∈ ℕ × ℕ − p�,n	o, �
, we have  

�SqRSr 	�
 ≥ �e:PQRSq >t
nA*�e:PQRSr >t

nA 

> 	1 − o
 ∗ 	1 − o
 

≥ 1 − ). 
We get �SqRSr 	�

 = 1as ) > 0 is arbitrary, 

which gives �� = �n. 

Therefore,  #$em − �MN = � is unique. 

Theorem 2.6: If a double sequence � = 	�MN
 is Λ-

Convergent in �� − Space	9, �,∗
 then it is also 
statistically Λ-convergent. 

Proof: As sequence � = 	�MN
is Λ-convergent in 	9, �,∗
 
then for� > 0 and ) ∈ 	0,1
 ∃ �G ∈ ℕ such that �e:PQRS	�
 > 1 − $ for all T ≥ �G and  ℎ ≥ �G.  

Thus,  �e k	T, ℎ
 ∈ ℕ × ℕ: �e:PQRS	�
 ≤ 1 − )l = 0. 

which establishes Theorem 2.6. 

The next example can justify that the converse of above 
mentioned theorem may be not true. 

Example 2.1: Consider 	*, |∗|
 is a real normed space 

with �:	$
 = u
u3|v| , $ ≥ 0 and � ∈ *. 

Here (*, �, |∗|
 is a �� − Space. Define sequence � = 	�MN
 as  

Λ�MN = yzTℎ , T and ℎ are squares
0 otherwise � 

Now, for every � > 0 and ) ∈ 	0,1
,  

N�,
	), �
 = k	T, ℎ
; T ≤ �, ℎ ≤  : �e:PQ	�
 ≤ 1 − )l 
= �	T, ℎ
; T ≤ �, ℎ ≤  : $

$ + aΛ�MNa ≤ 1 − )� 

= y	T, ℎ
; T ≤ �, ℎ ≤  ∶ aΛ�MNa ≥ )$
1 − ) > 0� 

= b	T, ℎ
; T ≤ �, ℎ ≤  ∶ aΛ�MNa = zTℎd 
= �	T, ℎ
; T ≤ �, ℎ ≤  ∶  T and ℎ are squares� 

Then, 1
� aN�,
	), �
a ≤  1

� |�	T, ℎ
; T ≤ �, ℎ ≤  
∶ T and ℎ are squares�| ≤ √� 

� = 0. 
⟹ #$em − lim � = 0. 

Thus, above sequence is statistically Λ -convergent but 
not usually convergent in 	*, �, |∗|
. 
Theorem 2.7: Let � = 	�MN
 and E = 	EMN
 be two 

sequences in �� − Space 	9, �,∗
. Then  

(i) If #$em − �MN = �G and #$em − EMN = EG , then 

#$em − 	�MN + EMN
 = �G + EG. 

(ii) If #$em − �MN = �Gand  #$em − ��MN = ��Gwhere � ∈ *. 

Proof : (i) Let  #$em − �MN = �G and  #$em − EMN = EG .  

For � > 0 and ) ∈ 	0,1
, take  o ∈ 	0,1
 with  	1 − o
 ∗	1 − o
 ≥ 1 − ) .  

Let p�	o, �
 = k	T, ℎ
 ∈ ℕ × ℕ ∶ �e:PQR�	�
 ≤ 1 − ol, 

pn	o, �
 = k	T, ℎ
 ∈ ℕ × ℕ ∶ �eCPQR�	�
 ≤ 1 − ol. 
Since, #$em − �MN = �G , we have �e�p�	o, �
� = 0 for all � > 0. 

Similarly, since  #$em − EMN = EG , we get �e�pn	o, �
� = 0 

for all � > 0 

Take p	o, �
=�p�	o, �
 ∪ pn	o, �
�. 
Then we observe that �e�K	o, �
� = 0 which implies �e�p�	o, �
� = 1. 
If 	T, ℎ
 ∈ ℕ × ℕ − p	o, �
, then we have  

�fe:PQR:�g3feCPQRC�g	�
 ≥ �e:PQR:�>�
rA ∗ �eCPQRC�>�

rA 
> 	1 − o
 ∗ 	1 − o
 

≥ 1 − ). 
This shows that  

�e >k	T, ℎ
 ∈ ℕ × ℕ: �fe:PQR:�g3feCPQRC�g	�
 ≤ 1 − olA
= 0. 

So    #$em − 	�MN + EMN
 = �G + EG. 
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(ii) Let  #$em − �MN = �G .  

First we take  � = 0 . For � > 0 and ) ∈ 	0,1
 

�eG:PQRG:� 	�
 = �G	�
 = 1 > 1 − ) 

�eG:PQ − 0�MN = 0. 
Then by Theorem 2.6, we have #$em − lim 0�MN = 0. 

Now, take � ∈ * but 	� ≠ 0
. 
Since   #$em − 0�MN = �G, then for every � > 0 and ) ∈ 	0,1
, we define the set 

�	), �
 = k	T, ℎ
 ∈ ℕ × ℕ: �e:PQR:� 	�
 ≤ 1 − )l such that 

�e�A	), �
� = 0. 
In this case �e���	), �
� = 1. 
If 	T, ℎ
 ∈ ���	), �
� , then 

�e�:PQR�:� 	�
 = �e:PQR:� � �
|�|� 

≥ �e:PQR:� 	�
 ∗ �G � �
|�| − �� 

= �e:PQR:� 	�
 ∗ 1 

> 1 − $. 

For � ∈ *	� ≠ 0
 this shows that  

�e >k	T, ℎ
 ∈ ℕ × ℕ: �e�:PQR�:� 	�
 ≤ 1 − $lA = 0. 

Hence    #$em − ��MN = ��G. 

Theorem 2.8: A double sequence � = 	�MN
 in �� −
Space	9, �,∗
 is statistically Λ-convergent to � iff there 
exists a set � = �	T, ℎ
� ⊆ ℕ × ℕ; T, ℎ = 1, 2, 3. .. with �e	�
 = 1 and #$em − �MN = �. 

Proof: Firstly we assume that  #$em − �MN = �, then for 

every � > 0 and � ∈ ℕ. 

Take p	�, �
 = k	T, ℎ
 ∈ ℕ × ℕ ∶ �e:PQRS	�
 ≤ 1 − �
�l, 

V	�, �
 = y	T, ℎ
 ∈ ℕ × ℕ ∶ �e:PQRS	�
 > 1 − 1
��. 

Then ��p	�, �
� = 0 with 

V	1, �
 ⊃ V	2, �
 … ⊃ V	+, �
 ⊃ V	+ + 1, �
 ….           (a) 

and  �e�V	�, �
� = 1, � = 1,2, …            (b) 

Next, we contrary prove the required result. Assume 

sequence  � = f�MNg is not statistically Λ-convergent to �. Then, for any � > 0 and ) ∈ 	0,1
, we have has 
infinitely many terms in the set �	T, ℎ
 ∈  ℕ × ℕ ∶�e:PQRS	�
 ≤ 1 − )� . 
Take  V	), �
 = k	T, ℎ
 ∈ ℕ × ℕ: �e:PQRS	�
 > 1 −
)d ; ) > �

� 	� = 1,2, … 
 
Then �e	V	), �
� = 0. 

∴ by (a) V	�, �
 ⊂ V	), �
. Hence  �e�V	�, �
� = 0  
which is contradiction to (b). 

Therefore � = 	�MN
 is statistically Λ – convergent to �. 

Conversely,  

Let there exists a set � = �	T, ℎ
: T, ℎ = 1,2, … � ⊂ ℕ × ℕ 

with �e	�
 = 1 and #$em − �MN = �. Then, for any � > 0 

and ) ∈ 	0,1
 ∃ � ∈ ℕ with  

�e:PQRS	�
 > 1 − ), ∀ T, ℎ ≥ �. 
Now, 

V	), �
 = k	T, ℎ
 ∈ ℕ × ℕ: �e:PQRS	�
 > 1 − )l 
⊆ 	ℕ × ℕ
 − �	T��3�, ℎ��3�),(T��3n , ℎ��3n), …} 

Therefore,    �e�V	), �
� ≤ 1 − 1 = 0. 
Hence, #$em − �MN = �.  

Theorem 2.9: A double sequence � = 	�MN
 is 

statistically Λ-convergent in �� − Space	9, �,∗
 iff it is 
statistically Λ-Cauchy in  �� − Space	9, �,∗
. 

Proof: Let #$em − �MN = �.  

For � > 0 and  ) ∈ 	0,1
 , we have 

�e >k	T, ℎ
 ∈ ℕ × ℕ: �e:PQRS	�
 ≤ 1 − )lA = 0.  

Take two numbers V and � such that 

�	), �
 = k	T, ℎ
 ∈ ℕ × ℕ: �e:PQRe: ¡	�
 ≤ 1 − )l, 
¢	), �
 = k	T, ℎ
 ∈ ℕ × ℕ: �e:PQR£	�
 ≤ 1 − )l, 
¤	), �
 = b	T, ℎ
 ∈ ℕ × ℕ: �e: ¡¥¦	�
 ≤ 1 − )d. 

Then �	), �
 ⊆ ¢	), �
⋃ ¤	), �
 

i.e. �e��	), �
� ≤ �e�¢	), �
� + �e�¤	), �
� = 0. 

Thus � = 	�MN
 is statistically Λ-Cauchy. 

Conversely,  

Assume � = 	�MN
 is statistically Λ-Cauchy, then �e��	), �
� = 0. 

We contrary prove that sequence statistically Λ-
convergent. Assume sequence � = 	�MN
 is not 

statistically Λ-convergent then  �e�¢	), �
� = 1 i.e. �e�	ℕ × ℕ
 − ¢	), �
� = 0. We can write 

�e:PQRe: ¡	�
 ≤ 2�e:PQR£	�/2
 < 1 − ) 

if �e:PQR£	�/2
 < �Rª
n . 

As �e�	¢	), �
�� = 0 ⇒ �e�	�	), �
�� = 0  i.e �e��	), �
� = 1 which is a contradiction. 

III. CONCLUSIONS 

This paper presents the overview of statistical 
convergence in setup of �� −spaces by defining and 
studying the idea of statistical Λ-convergence as well as 
statistical Λ-Cauchy for double sequences. Here, we 
derived more generalized results than the analogous 
results for double sequences in PN-spaces. 
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